السلاسل الزمنية التنبؤ - نماذج من هذا القبيل كما هو و تتحرك بين المتوسطات


المتوسطات المتحركة المتوسطات المتحركة مع مجموعات البيانات التقليدية القيمة المتوسطة غالبا ما تكون الأولى، وإحدى الإحصاءات الموجزة الأكثر فائدة لحساب. وعندما تكون البيانات في شكل سلسلة زمنية، فإن متوسط ​​السلسلة مقياس مفيد، ولكنه لا يعكس الطبيعة الدينامية للبيانات. وغالبا ما تكون القيم المتوسطة المحسوبة على فترات قصيرة، إما قبل الفترة الحالية أو تركزت على الفترة الحالية، أكثر فائدة. لأن هذه القيم المتوسطة سوف تختلف، أو تتحرك، كما يتحرك الفترة الحالية من الوقت ر 2، ر 3. الخ أنها تعرف باسم المتوسطات المتحركة (ماس). المتوسط ​​المتحرك البسيط هو (عادة) المتوسط ​​غير المرجح لقيم k السابقة. المتوسط ​​المتحرك المرجح ألساسا هو نفس المتوسط ​​المتحرك البسيط، ولكن مع المساهمات في المتوسط ​​المرجح بقربها من الوقت الحالي. لأنه ليس هناك واحد، ولكن سلسلة كاملة من المتوسطات المتحركة لأي سلسلة معينة، ومجموعة من ماس يمكن أن تكون نفسها رسمت على الرسوم البيانية، وتحليلها على شكل سلسلة، وتستخدم في النمذجة والتنبؤ. ويمكن بناء مجموعة من النماذج باستخدام المتوسطات المتحركة، وتعرف هذه النماذج بنماذج ما. إذا تم الجمع بين هذه النماذج ونماذج الانحدار الذاتي (أر)، فإن النماذج المركبة الناتجة تعرف باسم نماذج أرما أو أريما (I هي متكاملة). المتوسطات المتحركة البسيطة منذ يمكن اعتبار سلسلة زمنية كمجموعة من القيم، t 1،2،3،4، n يمكن حساب متوسط ​​هذه القيم. إذا افترضنا أن n كبير جدا، ونحن نختار عدد صحيح k الذي هو أصغر بكثير من n. يمكننا حساب مجموعة من متوسطات الفدرات أو متوسطات متحركة بسيطة (من الترتيب k): يمثل كل قياس متوسط ​​قيم البيانات على مدى فاصل من ملاحظات k. لاحظ أن أول ما ممكن من النظام gt0 k هو أن ل t ك. وبوجه أعم يمكننا إسقاط الجزء الإضافي الإضافي في التعبيرات أعلاه والكتابة: وهذا يشير إلى أن المتوسط ​​المقدر في الوقت t هو المتوسط ​​البسيط للقيمة الملحوظة في الوقت t والخطوات السابقة k -1 الزمنية. إذا تم تطبيق الأوزان التي تقلل من مساهمة الملاحظات التي هي أبعد من ذلك في الوقت المناسب، ويقال المتوسط ​​المتحرك أن يكون أضعافا أضعافا مضاعفة. وغالبا ما تستخدم المتوسطات المتحركة كشكل من أشكال التنبؤ، حيث القيمة المقدرة لسلسلة في الوقت t 1، S t1. يؤخذ على أنه ما للفترة حتى تصل إلى الوقت t. مثلا يستند تقدير اليوم إلى متوسط ​​القيم المسجلة سابقا حتى يوم الأمس (بالنسبة للبيانات اليومية). ويمكن اعتبار المتوسطات المتحركة البسيطة شكلا من أشكال التمهيد. في المثال الموضح أدناه، تم تعزيز مجموعة بيانات تلوث الهواء المبينة في مقدمة هذا الموضوع بمتوسط ​​متحرك لمدة 7 أيام (ما)، موضح هنا باللون الأحمر. كما يمكن أن يرى، خط ما ينعم القمم وأحواض في البيانات ويمكن أن تكون مفيدة جدا في تحديد الاتجاهات. وتعني الصيغة القياسية للحساب الآجل أن نقاط البيانات K -1 الأولى ليس لها قيمة ما، ولكن بعد ذلك تمتد الحسابات إلى نقطة البيانات النهائية في السلسلة. PM10 القيم المتوسطة اليومية، غرينتش المصدر: شبكة لندن لجودة الهواء، londonair. org. uk سبب واحد لحساب المتوسطات المتحركة البسيطة بالطريقة الموصوفة هو أنه يمكن القيم التي سيتم حسابها لجميع الفواصل الزمنية من الزمن تك حتى الوقت الحاضر، و كما يتم الحصول على قياس جديد للوقت ر 1، و ما للوقت ر 1 يمكن أن تضاف إلى مجموعة تحسب بالفعل. وهذا يوفر إجراء بسيطا لمجموعات البيانات الديناميكية. ومع ذلك، هناك بعض القضايا مع هذا النهج. ومن المعقول القول بأن القيمة المتوسطة خلال الفترات الثلاث الأخيرة، على سبيل المثال، ينبغي أن تكون موجودا في الوقت t -1، وليس الوقت t. ولمادة ما على عدد من الفترات ربما ربما ينبغي أن يكون موجودا في منتصف نقطة بين فترتين زمنيتين. حل لهذه المسألة هو استخدام الحسابات ما محورها، حيث ما في الوقت t هو متوسط ​​مجموعة متماثلة من القيم حول ر. وعلى الرغم من مزاياه الواضحة، فإن هذا النهج لا يستخدم عموما لأنه يتطلب توافر البيانات للأحداث المقبلة، وهو ما قد لا يكون كذلك. في الحالات التي يكون فيها التحليل بالكامل لسلسلة حالية، قد يكون استخدام ماس المركزة أفضل. ويمكن اعتبار المتوسطات المتحركة البسيطة شكلا من أشكال التمهيد، وإزالة بعض المكونات عالية التردد من سلسلة زمنية وتسليط الضوء على الاتجاهات (ولكن ليس إزالتها) بطريقة مماثلة للمفهوم العام للتصفية الرقمية. في الواقع، المتوسطات المتحركة هي شكل من أشكال المرشحات الخطية. ومن الممكن تطبيق حساب متوسط ​​متحرك لسلسلة تم تمهيدها بالفعل، أي تمهيد أو تصفية سلسلة سلسة بالفعل. على سبيل المثال، مع متوسط ​​متحرك من النظام 2، يمكننا أن نعتبر أنه يحسب باستخدام الأوزان، وبالتالي فإن ما في x 2 0.5 × 1 0.5 × 2. وبالمثل، فإن ما في x 3 0.5 × 2 0.5 × 3. إذا نحن (0.5 × 0.5 0.5 × 0.5) 0.5 (0.5 × 2 0.5 × 3) 0.25 × 1 0.5 × 2 0.25 × 3 أي الترشيح ذي المرحلتين (أو التفاف) قد أنتج متوسط ​​متحرك متماثل مرجح، مع أوزان. يمكن أن تنتج العديد من المحولات التحويلية متوسطات متحركه معززة جدا، وبعضها تم العثور على استخدام معين في المجالات المتخصصة، كما هو الحال في حسابات التأمين على الحياة. يمكن استخدام المتوسطات المتحركة لإزالة التأثيرات الدورية إذا تم حسابها مع طول التواتر كما هو معروف. على سبيل المثال، مع التغيرات الشهرية في البيانات الموسمية يمكن في كثير من الأحيان إزالتها (إذا كان هذا هو الهدف) من خلال تطبيق متماثل المتوسط ​​المتحرك لمدة 12 شهرا مع جميع الشهور المرجحة بالتساوي، باستثناء الأولى والأخيرة التي يتم وزنها بنسبة 12. هذا لأن هناك سوف يكون 13 شهرا في النموذج المتماثل (الوقت الحالي، ر - 6 أشهر). وينقسم المجموع إلى 12. ويمكن اعتماد إجراءات مماثلة لأي دورية محددة جيدا. المتوسطات المتحركة المرجح أضعافا مضاعفة (إوما) مع صيغة المتوسط ​​المتحرك البسيط: جميع المشاهدات متساوية بالتساوي. إذا اتصلنا هذه الأوزان متساوية، ألفا ر. فإن كل وزن من الأوزان k يساوي 1 ك. وبالتالي فإن مجموع الأوزان سيكون 1، والصيغة ستكون: لقد رأينا بالفعل أن تطبيقات متعددة من هذه العملية يؤدي إلى الأوزان متباينة. مع المتوسطات المتحركة المرجح أضعافا مضاعفة الإسهام في القيمة المتوسطة من الملاحظات التي هي أكثر إزالتها في الوقت يتم تخفيض مداولات، مما يؤكد على الأحداث الأخيرة (المحلية). في الأساس يتم عرض معلمة التمهيد 0 ألف طن lt1، وتنقح الصيغة إلى: ستكون الصيغة المتماثلة لهذه الصيغة بالشكل التالي: إذا تم اختيار الأوزان في النموذج المتماثل كعبارات لشروط التوسع ذي الحدين، (1212) 2q. فإنها سوف تلخص 1، وكما ف يصبح كبيرا، وتقريب توزيع عادي. هذا هو شكل من أشكال الترجيح النواة، مع الحدين تعمل بوصفها وظيفة النواة. التلازم المرحلة الثانية وصفها في القسم الفرعي السابق هو على وجه التحديد هذا الترتيب، مع س 1، مما أسفر عن الأوزان. في التمهيد الأسي فمن الضروري استخدام مجموعة من الأوزان التي مجموع إلى 1 والتي تقلل في حجم هندسيا. وعادة ما تكون الأوزان المستخدمة من النموذج: لإظهار أن هذه الأوزان توازي 1، فكر في توسيع 1 كمجموعة. يمكننا كتابة وتوسيع التعبير بين قوسين باستخدام الصيغة ذات الحدين (1- x) ص. حيث x (1) و p -1، مما يعطي: ثم يوفر نموذجا من المتوسط ​​المتحرك المرجح للنموذج: يمكن كتابة هذا الملخص كعلاقة تكرار: مما يبسط الحساب بشكل كبير، ويتجنب مشكلة أن نظام الترجيح يجب أن يكون بدقة لانهائية للأوزان لتلخص 1 (لقيم صغيرة من ألفا، وهذا هو عادة ليست هي القضية). تختلف الرموز المستخدمة من قبل مؤلفين مختلفين. يستخدم البعض الحرف S للإشارة إلى أن الصيغة هي في الأساس متغير أملس، وكتب: في حين أن أدبيات نظرية التحكم غالبا ما تستخدم Z بدلا من S للقيم المرجحة أو الممهدة أضعافا مضاعفة (انظر، على سبيل المثال، لوكاس و ساكوتشي، 1990، LUC1 ، وموقع نيست لمزيد من التفاصيل وأمثلة العمل). الصيغ المذكورة أعلاه مستمدة من عمل روبرتس (1959، ROB1)، ولكن هنتر (1986، HUN1) يستخدم تعبيرا عن النموذج: الذي قد يكون أكثر ملاءمة للاستخدام في بعض إجراءات التحكم. مع ألفا 1 متوسط ​​التقدير هو ببساطة قيمته المقاسة (أو قيمة عنصر البيانات السابق). مع 0.5 التقدير هو المتوسط ​​المتحرك البسيط للقياسات الحالية والسابقة. في نماذج التنبؤ القيمة، S t. وكثيرا ما يستخدم كقيمة تقديرية أو توقعية للفترة الزمنية القادمة، أي كالتقدير ل x في الوقت t 1. وهكذا لدينا: وهذا يدل على أن القيمة المتوقعة في الوقت t 1 هي مزيج من المتوسط ​​المتحرك المرجح أضعافا سابقا بالإضافة إلى مكون يمثل خطأ التنبؤ المرجح، إبسيلون. في الوقت t. على افتراض أن سلسلة زمنية تعطى وتوقعات مطلوب، قيمة ألفا هو مطلوب. ويمكن تقدير ذلك من البيانات الموجودة عن طريق تقييم مجموع أخطاء التنبؤ التربيعية التي يتم الحصول عليها مع قيم متفاوتة ألفا لكل t 2،3. (1) في تطبيقات التحكم، تكون قيمة ألفا مهمة في ذلك يستخدم في تحديد حدود التحكم العليا والسفلى، ويؤثر على متوسط ​​طول التشغيل (أرل) المتوقع قبل أن يتم كسر حدود السيطرة هذه (على افتراض أن السلاسل الزمنية تمثل مجموعة من المتغيرات المستقلة العشوائية الموزعة بشكل مماثل مع التباين المشترك). وفي ظل هذه الظروف يكون التباين في إحصائية التحكم: (لوكاس و ساكوتشي، 1990): وعادة ما تحدد حدود المراقبة كمضاعفات ثابتة لهذا التباين المتناظر، على سبيل المثال. - 3 مرات الانحراف المعياري. إذا افترض 0.25، على سبيل المثال، ويفترض أن البيانات التي يجري رصدها يكون توزيع عادي، N (0،1)، عندما تكون في السيطرة، ستكون حدود السيطرة - 1.134 وسوف تصل العملية إلى حد واحد أو حد آخر في 500 خطوة في المتوسط. لوكاس و ساكوتشي (1990 LUC1) تستمد أرلز لمجموعة واسعة من قيم ألفا وتحت مختلف الافتراضات باستخدام إجراءات ماركوف شين. وهي تقوم بتبويب النتائج، بما في ذلك توفير أرلس عندما يكون متوسط ​​عملية التحكم قد تم نقله من قبل بعض مضاعفات الانحراف المعياري. على سبيل المثال، مع التحول 0.5 مع ألفا 0.25 و أرل أقل من 50 خطوة الوقت. ومن المعروف أن النهج المذكورة أعلاه تمهيد الأسي واحد. حيث يتم تطبيق الإجراءات مرة واحدة على السلاسل الزمنية ومن ثم يتم إجراء عمليات التحليل أو التحكم على مجموعة البيانات التي تم تمريرها. إذا كانت مجموعة البيانات تشتمل على مكونات موسمية ومؤثرة، يمكن تطبيق التمهيد الأسي على مرحلتين أو ثلاث مراحل كوسيلة لإزالة (هذه النماذج بشكل صريح) (انظر كذلك القسم الخاص بالتنبؤ أدناه، ومثال نيست العامل). CHA1 شاتفيلد C (1975) تحليل سلسلة تايمز: النظرية والتطبيق. تشابمان أند هول، لندن HUN1 هنتر J S (1986) المتوسط ​​المتحرك المرجح أضعافا مضاعفة. J من كواليتي تيشنولوغي، 18، 203-210 LUC1 لوكاس J M، ساكوتشي M S (1990) المتوسط ​​المتحرك لأسفل متحكم في مخططات التحكم: الخصائص والتحسينات. تيشنوميتريكس، 32 (1)، 1-12 ROB1 روبرتس S W (1959) اختبارات التحكم في الرسم البياني استنادا إلى المتوسطات المتحركة الهندسية. تيشنوميتريكس، 1، 239-250Time سيريز ميثودس أساليب السلسلة الزمنية هي تقنيات إحصائية تستخدم البيانات التاريخية المتراكمة على مدى فترة زمنية. تفترض طرق السلاسل الزمنية أن ما حدث في الماضي سيستمر في المستقبل. وكما توحي السلسلة الزمنية للاسم، فإن هذه الأساليب تربط التنبؤ بعامل واحد فقط - الوقت. وهي تشمل المتوسط ​​المتحرك، والتجانس الأسي، وخط الاتجاه الخطي، وهي من بين الأساليب الأكثر شعبية للتنبؤ قصير المدى بين شركات الخدمات والتصنيع. وتفترض هذه الأساليب أن أنماط أو اتجاهات تاريخية يمكن التعرف عليها مع مرور الوقت ستكرر نفسها. المتوسط ​​المتحرك يمكن أن تكون توقعات السلاسل الزمنية بسيطة مثل استخدام الطلب في الفترة الحالية للتنبؤ بالطلب في الفترة المقبلة. ويسمى هذا أحيانا توقعات ساذجة أو بديهية. 4 على سبيل المثال، إذا كان الطلب هو 100 وحدة هذا الأسبوع، والتوقعات لأسابيع الطلب المقبل هو 100 وحدة إذا كان الطلب تبين أن 90 وحدة بدلا من ذلك، ثم الطلب أسابيع التالية هو 90 وحدة، وهلم جرا. هذا النوع من طريقة التنبؤ لا يأخذ في الاعتبار سلوك الطلب التاريخي فإنه يعتمد فقط على الطلب في الفترة الحالية. وهو يتفاعل مباشرة مع حركة عادية، عشوائية في الطلب. وتستخدم طريقة المتوسط ​​المتحرك البسيط عدة قيم للطلب خلال الماضي القريب لوضع توقعات. وهذا يميل إلى إبطاء أو إبطال الزيادات العشوائية والنقصان في التوقعات التي تستخدم فترة واحدة فقط. إن المتوسط ​​المتحرك البسيط مفيد للتنبؤ بالطلب المستقر ولا يظهر أي سلوك واضح في الطلب، مثل الاتجاه أو النمط الموسمي. يتم حساب المتوسطات المتحركة لفترات محددة، مثل ثلاثة أشهر أو خمسة أشهر، وهذا يتوقف على مدى رغبة المتنبأ في تسهيل بيانات الطلب. وكلما طالت فترة المتوسط ​​المتحرك، كلما كان الأمر أكثر سلاسة. صيغة حساب المتوسط ​​المتحرك البسيط هي حساب متوسط ​​متحرك بسيط تقوم شركة توريد الورق الفوري بتزويد وتوريد اللوازم المكتبية إلى الشركات والمدارس والوكالات داخل دائرة نصف قطرها 50 ميلا من مستودعها. إن أعمال توريد المكاتب تنافسية، والقدرة على تقديم الطلبات فورا هي عامل في الحصول على عملاء جدد والحفاظ على العملاء القدامى. (عادة ما تطلب المكاتب عدم تشغيلها عند انخفاض الإمدادات، ولكن عندما تنفد تماما، ونتيجة لذلك، فإنها تحتاج إلى أوامرها على الفور.) مدير الشركة يريد أن يكون بعض السائقين كافية والمركبات المتاحة لتسليم أوامر على الفور و لديهم مخزون كاف في المخزون. ولذلك، فإن المدير يريد أن يكون قادرا على التنبؤ بعدد الطلبات التي ستحدث خلال الشهر المقبل (أي للتنبؤ الطلب على الولادات). من سجلات أوامر التسليم، تراكمت الإدارة البيانات التالية خلال الأشهر ال 10 الماضية، والتي تريد حساب المتوسطات المتحركة 3 و 5 أشهر. دعونا نفترض أن هذا هو نهاية تشرين الأول / أكتوبر. والتنبؤ الناتج عن المتوسط ​​المتحرك لمدة 3 أشهر أو 5 أشهر هو عادة للشهر التالي بالتسلسل، وهو في هذه الحالة هو نوفمبر. ويحسب المتوسط ​​المتحرك من الطلب على الأوامر خلال الأشهر الثلاثة السابقة بالتسلسل وفقا للمعادلة التالية: يحسب المتوسط ​​المتحرك لمدة 5 أشهر من بيانات 5 أشهر السابقة من بيانات الطلب على النحو التالي: الشهران 3 و 5 أشهر يبين الجدول التالي توقعات المتوسط ​​المتحرك لجميع أشهر بيانات الطلب. في الواقع، فإن توقعات نوفمبر فقط استنادا إلى الطلب الشهري الأخير سيتم استخدامها من قبل المدير. ومع ذلك، فإن التوقعات السابقة للأشهر السابقة تسمح لنا بمقارنة التوقعات مع الطلب الفعلي لمعرفة مدى دقة طريقة التنبؤ - أي مدى نجاحها. المتوسطات الثلاثة والخمسة أشهر يميل كل من التنبؤات المتحركة المتوسطة في الجدول أعلاه إلى إبطاء التباين الذي يحدث في البيانات الفعلية. ويمكن ملاحظة تأثير التمهيد هذا في الشكل التالي الذي تم فيه فرض متوسطات لمدة 3 أشهر و 5 أشهر على رسم بياني للبيانات الأصلية: إن المتوسط ​​المتحرك لمدة 5 أشهر في الشكل السابق يزيل التقلبات إلى حد أكبر من المتوسط ​​المتحرك لمدة 3 أشهر. غير أن متوسط ​​الأشهر الثلاثة يعكس بصورة أوثق أحدث البيانات المتاحة لمدير الإمدادات المكتبية. وبصفة عامة، فإن التنبؤات باستخدام المتوسط ​​المتحرك لفترة أطول أبطأ من أجل الاستجابة للتغيرات الأخيرة في الطلب مقارنة بتلك التي أجريت باستخدام متوسطات متحركة أقصر. فالفترات الإضافية للبيانات تضعف السرعة التي تستجيب بها التوقعات. وكثيرا ما يتطلب تحديد العدد المناسب من الفترات لاستخدامها في توقعات المتوسط ​​المتحرك قدرا من التجارب التجريبية والخطأ. أما عيب أسلوب المتوسط ​​المتحرك فهو أنه لا يتفاعل مع التغيرات التي تحدث لسبب ما، مثل الدورات والتأثيرات الموسمية. وعادة ما يتم تجاهل العوامل التي تسبب التغيرات. وهي في الأساس طريقة ميكانيكية، تعكس البيانات التاريخية بطريقة متسقة. ومع ذلك، فإن طريقة المتوسط ​​المتحرك تتميز بكونها سهلة الاستخدام وسريعة وغير مكلفة نسبيا. وبصفة عامة، يمكن لهذه الطريقة أن توفر توقعات جيدة على المدى القصير، ولكن لا ينبغي دفعها بعيدا جدا في المستقبل. المتوسط ​​المتحرك المرجح يمكن تعديل طريقة المتوسط ​​المتحرك لتعكس تقلبات البيانات بشكل أوثق. في طريقة المتوسط ​​المتحرك المرجح، يتم تعيين الأوزان إلى أحدث البيانات وفقا للمعادلة التالية: يبدو أن بيانات الطلب لخدمات الكمبيوتر بيإم (المبينة في الجدول الخاص بالمثال 10.3) تتبع اتجاها خطييا متزايدا. وتريد الشركة حساب خط اتجاه خطي لمعرفة ما إذا كان أكثر دقة من التجانس الأسي وتوقعات التمهيد الأسي المعدلة التي تم تطويرها في المثالين 10.3 و 10.4. وفيما يلي القيم المطلوبة لحسابات المربعات الصغرى: باستخدام هذه القيم، تحسب معلمات خط الاتجاه الخطي على النحو التالي: ولذلك، فإن معادلة خط الاتجاه الخطي هي لحساب التنبؤات للفترة 13، والسماح x 13 في الخطية خط الاتجاه: يظهر الرسم البياني التالي خط الاتجاه الخطي مقارنة مع البيانات الفعلية. ويبدو أن خط الاتجاه يعكس بشكل وثيق البيانات الفعلية - أي أن يكون مناسبا - ومن ثم سيكون نموذجا جيدا للتنبؤ بهذه المشكلة. ومع ذلك، فإن عيب خط الاتجاه الخطي هو أنه لن يتكيف مع تغيير في الاتجاه، حيث أن الأساليب التنبؤ الأسي التنبؤات وهذا هو، فمن المفترض أن جميع التوقعات المستقبلية سوف تتبع خط مستقيم. هذا يحد من استخدام هذه الطريقة إلى إطار زمني أقصر الذي يمكن أن تكون مؤكدة نسبيا أن الاتجاه لن يتغير. التسويات الموسمية نمط موسمي هو زيادة متكررة وانخفاض في الطلب. العديد من العناصر الطلب تظهر السلوك الموسمية. وتتبع مبيعات الملابس أنماطا موسمية سنوية، حيث يزداد الطلب على الملابس الدافئة في الخريف والشتاء ويتراجع في الربيع والصيف مع زيادة الطلب على الملابس الباردة. الطلب على العديد من البنود التجزئة، بما في ذلك اللعب والمعدات الرياضية والملابس والأجهزة الإلكترونية، والهامب، والديك الرومي، والنبيذ، والفاكهة، وزيادة خلال موسم الأعياد. زيادة الطلب بطاقة معايدة جنبا إلى جنب مع أيام خاصة مثل عيد الحب وعيد الأم. ويمكن أيضا أن تحدث الأنماط الموسمية على أساس شهري أو أسبوعي أو حتى يومي. بعض المطاعم لديها ارتفاع الطلب في المساء مما كان عليه في الغداء أو في عطلة نهاية الأسبوع بدلا من أيام الأسبوع. حركة المرور - وبالتالي المبيعات - في مراكز التسوق تلتقط يومي الجمعة والسبت. هناك عدة طرق لتعكس الأنماط الموسمية في توقعات سلسلة زمنية. سنصف إحدى الطرق البسيطة باستخدام عامل موسمي. والعامل الموسمي هو قيمة رقمية تضرب في التوقعات العادية للحصول على توقعات معدلة موسميا. طريقة واحدة لتطوير الطلب على العوامل الموسمية هي تقسيم الطلب على كل فترة موسمية حسب الطلب السنوي الإجمالي، وفقا للمعادلة التالية: العوامل الموسمية الناتجة بين 0 و 1.0 هي في الواقع جزء من إجمالي الطلب السنوي المخصص ل في كل موسم. وتضاعف هذه العوامل الموسمية في الطلب المتوقع سنويا لإعطاء التنبؤات المعدلة لكل موسم. حساب توقعات مع التعديلات الموسمية تنمو مزارع ويشبون من بيع الديك الرومي إلى شركة لتجهيز اللحوم على مدار السنة. ومع ذلك، من الواضح موسم الذروة خلال الربع الرابع من العام، من أكتوبر إلى ديسمبر. وقد شهدت مزارع عظمون الطلب على الديوك الرومي على مدى السنوات الثلاث الماضية المبينة في الجدول التالي: ولأن لدينا ثلاث سنوات من بيانات الطلب، يمكننا حساب العوامل الموسمية عن طريق قسمة الطلب الفصلي الكلي على مدى ثلاث سنوات من الطلب الكلي على مدى السنوات الثلاث : بعد ذلك، نريد مضاعفة الطلب المتوقع للعام القادم، 2000، من خلال كل من العوامل الموسمية للحصول على الطلب المتوقع لكل ربع سنة. ولتحقيق ذلك، نحتاج إلى توقعات الطلب لعام 2000. وفي هذه الحالة، وبما أن بيانات الطلب الواردة في الجدول يبدو أنها تظهر اتجاها متزايدا بشكل عام، فإننا نحسب خط اتجاه خطي لثلاث سنوات من البيانات الواردة في الجدول للحصول على الخام تقديرات التوقعات: وهكذا، فإن التوقعات لعام 2000 هي 58.17، أو 58.170 الديك الرومي. وباستخدام هذه التوقعات السنوية للطلب، فإن التنبؤات المعدلة موسميا، سف i، لعام 2000 هي مقارنة هذه التوقعات الفصلية بقيم الطلب الفعلية في الجدول، ويبدو أنها تقديرات توقعات جيدة نسبيا، مما يعكس كلا من التغيرات الموسمية في البيانات و الاتجاه التصاعدي العام. 10-12. كيف تكون طريقة المتوسط ​​المتحرك مشابهة للتجانس الأسي 10-13. ما تأثير على نموذج تمهيد الأسي وزيادة ثابت تمهيد لديها 10-14. كيف يختلف تعديل الأسي تعديل تختلف عن الأسي تمهيد 10-15. ما يحدد اختيار ثابت تمهيد للاتجاه في تعديل نموذج الأسي تعديل 10-16. وفي أمثلة الفصل لأساليب السلاسل الزمنية، كان من المفترض دائما أن تكون توقعات البداية هي نفس الطلب الفعلي في الفترة الأولى. اقتراح طرق أخرى يمكن أن تكون مشتقة التنبؤ البداية في الاستخدام الفعلي. 10-17. كيف يختلف نموذج التنبؤ بالخط الاتجاهي الخطي عن نموذج الانحدار الخطي للتنبؤ 10-18. من نماذج السلاسل الزمنية المعروضة في هذا الفصل، بما في ذلك المتوسط ​​المتحرك والمتوسط ​​المتحرك المرجح، والتجانس الأسي وتعديل الأسي المعدل، وخط الاتجاه الخطي، أي واحد تعتبره أفضل لماذا 10-19. ما هي المزايا التي عدلت التجانس الأسي على خط الاتجاه الخطي للطلب المتوقع الذي يظهر اتجاها 4 K. B. كاهن وجيه ت. منتزر، التنبؤ في المستهلك والأسواق الصناعية، مجلة توقعات الأعمال 14، لا. 2 (صيف 1995): 21-28.وفي الممارسة العملية سيوفر المتوسط ​​المتحرك تقديرا جيدا لمتوسط ​​السلاسل الزمنية إذا كان المتوسط ​​ثابتا أو متغيرا ببطء. وفي حالة المتوسط ​​الثابت، فإن أكبر قيمة m تعطي أفضل التقديرات للمتوسط ​​الأساسي. وستؤدي فترة المراقبة الأطول إلى الحد من آثار التباين. والغرض من توفير m أصغر هو السماح للتنبؤ بالاستجابة للتغيير في العملية الأساسية. ولتوضيح ذلك، نقترح مجموعة بيانات تتضمن التغييرات في الوسط الأساسي للمسلسلات الزمنية. ويبين الشكل السلاسل الزمنية المستخدمة للتوضيح مع متوسط ​​الطلب الذي نشأت منه السلسلة. يبدأ المتوسط ​​ك ثابت عند 10. يبدأ في الوقت 21، يزداد بوحدة واحدة في كل فترة حتى يصل إلى القيمة 20 في وقت 30. ثم يصبح ثابتة مرة أخرى. وتتم محاكاة البيانات بإضافة متوسط ​​الضوضاء العشوائية من التوزيع العادي مع متوسط ​​الصفر والانحراف المعياري 3. وتقريب نتائج المحاكاة إلى أقرب عدد صحيح. ويبين الجدول الملاحظات المحاكاة المستخدمة في المثال. عندما نستخدم الجدول، يجب أن نتذكر أنه في أي وقت من الأوقات، إلا أن البيانات السابقة معروفة. وتظهر تقديرات معلمة النموذج، بالنسبة إلى ثلاث قيم مختلفة من m، مع متوسط ​​السلاسل الزمنية في الشكل أدناه. ويبين الشكل متوسط ​​المتوسط ​​المتحرك للمتوسط ​​في كل مرة وليس التنبؤ. ومن شأن التنبؤات أن تحول منحنيات المتوسط ​​المتحرك إلى اليمين حسب الفترات. وهناك استنتاج واحد واضح على الفور من هذا الرقم. وبالنسبة للتقديرات الثلاثة جميعها، فإن المتوسط ​​المتحرك يتخلف عن الاتجاه الخطي، مع زيادة الفارق الزمني مع m. والفارق الزمني هو المسافة بين النموذج والتقدير في البعد الزمني. وبسبب الفارق الزمني، فإن المتوسط ​​المتحرك يقلل من الملاحظات نظرا لأن المتوسط ​​يتزايد. انحياز المقدر هو الفرق في وقت محدد في متوسط ​​قيمة النموذج والقيمة المتوسطة التي يتنبأ بها المتوسط ​​المتحرك. التحيز عندما يكون المتوسط ​​يزداد سلبيا. أما بالنسبة للمتوسط ​​المتناقص، فإن التحيز إيجابي. التأخر في الوقت والتحيز التي أدخلت في التقدير هي وظائف م. وكلما زادت قيمة m. وكلما كبر حجم التأخر والتحيز. لسلسلة متزايدة باستمرار مع الاتجاه أ. فإن قيم التأخر والتحيز لمقدر المتوسط ​​تعطى في المعادلات أدناه. لا تتطابق منحنيات المثال مع هذه المعادلات لأن نموذج المثال لا يزداد بشكل مستمر، بل يبدأ كتغيير ثابت للاتجاه ثم يصبح ثابتا مرة أخرى. كما تتأثر منحنيات المثال بالضوضاء. ويتمثل متوسط ​​المتوسط ​​المتحرك للتوقعات في المستقبل في تحويل المنحنيات إلى اليمين. ويزيد التأخر والتحيز تناسبيا. وتشير المعادلات أدناه إلى الفارق الزمني والتحيز لفترات التنبؤ في المستقبل عند مقارنتها بمعلمات النموذج. مرة أخرى، هذه الصيغ هي لسلسلة زمنية مع الاتجاه الخطي المستمر. ولا ينبغي لنا أن نفاجأ بهذه النتيجة. ويستند متوسط ​​التقدير المتحرك إلى افتراض متوسط ​​ثابت، والمثال له اتجاه خطي في المتوسط ​​خلال جزء من فترة الدراسة. وبما أن سلسلة الوقت الحقيقي نادرا ما تتوافق تماما مع افتراضات أي نموذج، يجب أن نكون مستعدين لمثل هذه النتائج. ويمكننا أيضا أن نخلص من الشكل إلى أن تباين الضوضاء له أكبر تأثير على m أصغر. ويكون التقدير أكثر تقلبا بكثير بالنسبة للمتوسط ​​المتحرك البالغ 5 من المتوسط ​​المتحرك البالغ 20. ولدينا رغبة متضاربة في زيادة m لتقليل تأثير التباين الناجم عن الضوضاء وتقليل m لجعل التنبؤ أكثر استجابة للتغيرات في الحقيقة. والخطأ هو الفرق بين البيانات الفعلية والقيمة المتوقعة. وإذا كانت السلسلة الزمنية حقا قيمة ثابتة، فإن القيمة المتوقعة للخطأ هي صفر، ويتألف تباين الخطأ من عبارة دالة وعبارة ثانية هي تباين الضوضاء. المصطلح الأول هو التباين في المتوسط ​​المقدر مع عينة من الملاحظات m، على افتراض أن البيانات تأتي من مجتمع ذو متوسط ​​ثابت. يتم تقليل هذا المصطلح من خلال جعل m كبيرة قدر الإمكان. A م كبير يجعل التوقعات لا تستجيب لتغيير في السلسلة الزمنية الأساسية. لجعل التنبؤات تستجيب للتغييرات، نريد m صغيرة قدر الإمكان (1)، ولكن هذا يزيد من التباين الخطأ. ويتطلب التنبؤ العملي قيمة وسيطة. التنبؤ مع إكسيل تقوم الوظيفة الإضافية للتنبؤ بتطبيق صيغ المتوسط ​​المتحرك. ويبين المثال الوارد أدناه التحليل الذي توفره الوظيفة الإضافية لعينة البيانات في العمود باء. ويتم فهرسة الملاحظات العشرة الأولى من 9 إلى 0. وبالمقارنة بالجدول أعلاه، يتم تغيير مؤشرات الفترة بمقدار -10. وتوفر الملاحظات العشرة الأولى قيم بدء التشغيل للتقدير وتستخدم لحساب المتوسط ​​المتحرك للفترة 0. ويبين العمود (10) (C) المتوسطات المتحركة المحسوبة. وتكون معلمة المتوسط ​​المتحرك m في الخلية C3. ويبين العمود (1) (D) توقعات لفترة واحدة في المستقبل. الفترة الزمنية المتوقعة في الخلية D3. عندما يتم تغيير الفاصل الزمني المتوقع إلى عدد أكبر يتم تحويل الأرقام في العمود فور إلى أسفل. ويبين العمود إر (1) (E) الفرق بين الملاحظة والتنبؤ. على سبيل المثال، الملاحظة في الوقت 1 هي 6. القيمة المتوقعة من المتوسط ​​المتحرك في الوقت 0 هي 11.1. الخطأ ثم -5.1. ويحسب الانحراف المعياري ومتوسط ​​الانحراف المتوسط ​​في الخلايين E6 و E7 على التوالي. التسلسل مع تحليل السلاسل الزمنية ما هو التنبؤ التنبؤ هو الأسلوب الذي يستخدم على نطاق واسع في تحليل السلاسل الزمنية للتنبؤ متغير الاستجابة، مثل الأرباح الشهرية، وأداء المخزون، أو أرقام البطالة، لفترة محددة من الزمن. وتستند التنبؤات إلى أنماط في البيانات الموجودة. علی سبیل المثال، یمکن لمدیر المستودع أن یعکس کمیة المنتج المطلوب خلال الأشھر الثلاثة التالیة بناء علی ال 12 شھرا السابقة من الطلبات. يمكنك استخدام مجموعة متنوعة من أساليب التسلسل الزمني، مثل تحليل الاتجاهات، والتحلل، أو تجانس أسي واحد، لنمذجة الأنماط في البيانات واستقراء تلك الأنماط إلى المستقبل. اختيار طريقة تحليل ما إذا كانت أنماط ثابتة (ثابت مع مرور الوقت) أو ديناميكية (تغيير مع مرور الوقت)، وطبيعة الاتجاه والمكونات الموسمية، وإلى أي مدى إلى الأمام تريد التنبؤ. قبل إنتاج التنبؤات، تناسب العديد من النماذج المرشحة للبيانات لتحديد أي نموذج هو الأكثر استقرارا ودقة. توقعات لتحليل المتوسط ​​المتحرك القيمة المجهزة في الوقت t هي المتوسط ​​المتحرك غير المركزة في الوقت t -1. والتنبؤات هي القيم المجهزة في الأصل المتوقع. إذا كنت تتوقع 10 وحدات الوقت المقبلة، فإن القيمة المتوقعة في كل مرة تكون القيمة المجهزة في الأصل. وتستخدم البيانات حتى المنشأ لحساب المتوسطات المتحركة. يمكنك استخدام طريقة المتوسط ​​المتحرك الخطي من خلال حساب المتوسطات المتحركة المتتالية. وغالبا ما تستخدم طريقة المتوسطات الخطية المتحركة عندما يكون هناك اتجاه في البيانات. أولا، حساب وتخزين المتوسط ​​المتحرك للسلسلة الأصلية. ثم حساب وتخزين المتوسط ​​المتحرك للعمود المخزن سابقا للحصول على المتوسط ​​المتحرك الثاني. في التنبؤ ساذجة، والتنبؤ الوقت t هو قيمة البيانات في الوقت t -1. إن استخدام المتوسط ​​المتحرك للمتوسط ​​مع المتوسط ​​المتحرك للطول الأول يعطي التنبؤ الساذج. التنبؤات لتحليل تجانس أسي واحد القيمة المجهزة في الوقت t هي القيمة الملساء في الوقت t-1. والتنبؤات هي القيمة المجهزة في الأصل المتوقع. إذا كنت تتوقع 10 وحدات الوقت المقبلة، فإن القيمة المتوقعة في كل مرة تكون القيمة المجهزة في الأصل. يتم استخدام البيانات تصل إلى أصل للتجانس. وفي التنبؤ الساذج، فإن التنبؤ بالوقت t هو قيمة البيانات في الوقت t-1. أداء تجانس أسي واحد مع وزن واحد للقيام التنبؤ ساذجة. توقعات لتحليل التجانس الأسي المزدوج يستخدم التجانس الأسي المزدوج مكونات المستوى والاتجاه لتوليد التنبؤات. والتوقعات الخاصة بالفترات m القادمة من نقطة في الوقت t هي L t مت t. حيث L t هو المستوى و T t هو الاتجاه في الوقت t. سيتم استخدام البيانات حتى وقت الأصل المتوقع للتجانس. التوقعات لطريقة الشتاء يستخدم أسلوب الشتاء مستوى، والاتجاه، والمكونات الموسمية لتوليد التنبؤات. والتوقعات الخاصة بالفترات m القادمة من نقطة في الوقت t هي: حيث L t هو المستوى و T t هو الاتجاه في الوقت t، مضروبا في (أو تضاف إلى نموذج إضافي) المكون الموسمية للفترة نفسها من السنة الماضية. يستخدم وينترس ميثود البيانات حتى وقت الأصل المتوقع لتوليد التوقعات.

Comments